同樣都是去掉雜訊的方法
non local 和 local filter 最大的區別在於
Local 方法是只和要周圍的點 (Research window 內) 的相似度做比較而決定權重
而 Non Local 方法則是另外在每個點的周圍定義一個區塊 (Patch window),
比較 Patch 與Patch 間的相似度而決定該patch 的中心點的權重
好處是比較能真實反映點與點間的相似度
數學結構與原理如下
Reference:
http://www.ipol.im/pub/art/2011/bcm_nlm/?utm_source=doi
Source code (C++ with OPENCV API)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Mat showDepth1(480, 640, CV_8U, Scalar(0));
//non local filter
//Mat showDepth1;
//showDepth.copyTo(showDepth1);
//fastNlMeansDenoising(showDepth, showDepth, 3, 3, 11 );
int iheight=480;
int iwidth=640;
int patchwindow=1; // total window 2f+1
int researchwindow=3; // total window 2r+1
int sigma=5; // Noise parameter
int fh=0.4*sigma; // filter parameter
int sigma2=sigma*sigma;
int Maxnoisedst=9*sigma2; //Max noise signal
//tabulate the exp(-x)
double *exptable =new double[Maxnoisedst];
double fh2=fh*fh;
for (int x=0;x<=Maxnoisedst;x++)
exptable[x]=exp((-1*x)/(fh2));
// for each pixel x,y
for (int x=0; x < iwidth;x++)
{
for (int y=0; y < iheight;y++)
{
// Reduce the patch window if we meet the boundary
int rPW=min(min(patchwindow,min(x,y)) ,min(iheight-1-y,iwidth-1-x));
//Reduce the Research window if we meet the boundary
int imax=min(x+researchwindow,iwidth-1-rPW);
int imin=max(x-researchwindow,rPW);
int jmax=min(y+researchwindow,iheight-1-rPW);
int jmin=max(y-researchwindow,rPW);
double totalweight=0;
double maxweight=0;
double depthdata=0;
for (int i=imin;i<=imax ; i++) // sum all the point in the research window
{
for (int j=jmin; j<=jmax;j++)
{
if (i!=x || j!=y)
{
double weight=0;
double dist=0;
for (int ii=-rPW;ii<=rPW;ii++)// calculate the distance between the patch (x,y), (i,j)
{
for (int jj=-rPW;jj<=rPW;jj++)
{
int px=showDepth.at<uchar>(y+jj,x+ii);
int qx=showDepth.at<uchar>(j+jj,i+ii);
int dst=px-qx;
dist+=dst*dst;
}
}
// normalized distance
dist/=(2*rPW+1)*(2*rPW+1);
// max distance^2-2*sigma^2 of rPW , 0.0
dist=max(dist -2*sigma2,0.0);
if (dist>Maxnoisedst)
weight=0;
else
{
int temp=(int)floor((double)dist);
double weight1=exptable[temp];
double weight2=exptable[temp+1];
weight=weight1 +(weight2-weight1)*(dist-temp);
}
if (weight> maxweight) maxweight=weight;
totalweight+=weight;
int temp1=showDepth.at<uchar>(j,i);
depthdata+=temp1*weight;
}
}
}
int temp=showDepth.at<uchar>(y,x);
depthdata+=temp*maxweight;
totalweight+=maxweight;
if (totalweight > 1e-10)
showDepth1.at<uchar>(y,x)=(int) floor(depthdata/totalweight);
}
}